

Building a digital twin of indoor airflow for reducing HVAC energy consumption Kennisdag NVBV

Eric Terry 09-06-2022

Company introduction: Actiflow - experts in fluid dynamics

- Actiflow is an engineering company specialized in fluid dynamics
- We use complex airflow simulations (CFD) to support our customers in product development, and we advice them about flow related issues in the built environment (mainly HVAC and wind)
- In the built environment:
 - Wind comfort and loading
 - Urban microclimate
 - Smoke and heat removal in case of fire
 - HVAC system analysis & design for offices, atria, classrooms, cleanrooms, datacenters, industrial facilities, etc.

Reduction of HVAC energy consumption in the built environment

- Potential to save energy consumption by using "smart" HVAC systems: optimizing HVAC settings according to specific use of the room, as a function of time
- Possible input for optimization:
 - Simulations: used in the design phase
 - Measurements: used during operation/use
- Hard to determine an optimization strategy (understand impact of HVAC system settings on indoor climate)
- A digital twin can provide the solution (combination of real-time measurements and simulations)
- In first instance, digital twin is developed for datacenters

Cooling in datacenters – great potential to save energy using CFD

- Datacenters are huge energy consumers (2.7 TWh in 2019 in NL)
- Consumption is rising faster than in any other industry
- Cooling accounts for 25-40% of energy consumption
- DC operators want to save energy, but risks are high
- Uptime / SLAs are crucial
- A non-invasive technology (digital twin) is needed to monitor and optimize cooling

Regio	Leveringscategorie	Geleverde elektriciteit		
		2017	2018	2019*
		GWh	GWh	GWh
Nederland	Totaal	1.647	2.360	2.740
Nederland	< 7,5 GWh	271	289	281
Nederland	> 7,5 GWh	1.376	2.071	2.460
Gemeentes Amsterdam en Haarlemmermeer	Totaal	746	1.120	1.230
Gemeentes Amsterdam en Haarlemmermeer	< 7,5 GWh	63	87	97
Gemeentes Amsterdam en Haarlemmermeer	> 7,5 GWh	683	1.033	1.133
Overig Nederland	Totaal	901	1.240	1.510
Overig Nederland	< 7,5 GWh	208	201	184
Overig Nederland	> 7,5 GWh	693	1.038	1.327

Bron: CBS

Consortium

For the development of the digital twin, a consortium of partners was set up:

- TNO: Knowledge supplier and founder
- Vortech: scientific software developers
- Perf-it: supplier of DCIM software (DataCenter Infrastructure Management)
- Actiflow: experts in aerodynamics E.g. wind and indoor climate studies

TNO

VORTECH

Perf-i

Technologies for monitoring and optimization

- Sensors are used for real time temperature monitoring
 - Accurate and real-time data, but only at discrete locations
- 3D flow models (CFD) are used for design & optimization
 - Good 3D insights, but stationary and not coupled with reality (result depends on input which may differ from reality)

Digital twin combines both technologies

Combining sensors and CFD = best of both worlds

- Sensors provide local real-time data
- CFD model uses measurement data to create a reliable full 3D overview

Mathematical fusion of measurement data and CFD

- Input measurement data as hard boundary conditions in CFD does NOT work
- Instead, an optimization routine is used to nudge the simulation result towards the data
- Uncertainties (e.g. exact heat load of servers) are defined in the simulation setup
- "Uncertain" parameters are modified until a result is reached that best fits the measurements
- Result is physically correct and validated
- Thanks to the use of the data, the CFD simulations can be largely accelerated (nearly real-time)
- The result is a (nearly) real time computer model of reality with predictive capabilities

Digital twin is called 4DCOOL and has 2 functionalities

- 4DCOOL shows you the real-time temperature distribution in the white space in 3D or clear 2D cross sections
- With the "what-if" functionality, future scenarios can be analyzed:
 - What if one of my cooling units fails?
 - What if my customer installs additional servers?
 - What if I would reduce the fan speed of one of my cooling units?
 - What would happen if I open more perforated tiles?

The answer to these questions enables a safe optimization of the cooling

What are the advantages for the datacenter?

- Optimize (minimize) cooling and as such save on cooling energy without the risk of SLA breaches or outages (2 pilot projects show savings of 20-25% on air cooling)
- Be able to adapt the cooling to the growth of the datacenter
- Delay investments in new cooling capacity
- Prove to customers that you do maximum efforts to be a safe, sustainable and reliable partner

4DCOOL is tested in 2 pilot projects

- 4DCOOL is tested in a datacenter in Mechelen (BE) and Groningen (NL)
- The CAD model and 4DCOOL output for one of these data-centers is shown below

4DCOOL is used to reduce cooling energy (1)

What if I simply reduce the fan speed of all cooling units by 25%?

Result after optimization of the tile configuration which determines the inflow of cold air, again, reducing the fan speed of all cooling units by 25%

4DCOOL is used to analyze the impact of added heat load

What if I add 42kW of heat load to isle 5 and 7 without changing any cooling parameter?

Conclusions and remarks

- About 4DCOOL:
 - A digital twin of the temperature distribution inside datacenters is successfully developed and validated
 - The tool has the additional functionality to evaluate "what-if" scenarios
 - In both pilot projects, optimization of the cooling has led to energy savings of more than 20%
 - The consortium is looking for opportunities to initiate new commercial pilot projects to understand the impact of 4DCOOL on further energy savings in the cooling water circuit
- The digital twin technology can also be used in other type of buildings:
 - Monitor the indoor climate with changing indoor or outdoor heat loads (e.g., people, equipment, outside air temperature, solar radiation, etc.)
 - Optimize the indoor climate by testing possible improvements through "what-if" scenarios
 - Safely implement the improvements and save on energy consumption

Questions

Actiflow BV Tramsingel 1 4814 AB Breda Nederland

Tel. +31 (0) 765 422 220 contact@actiflow.com

www.actiflow.com

