

Kennisdag 'De bouwsector in transitie: digitale revolutie of terug naar de natuur?"

EFFECTIVITEIT VAN RAAMFEEDBACKSYSTEMEN IN KANTOORTUINEN

DOOR SPREKER: SERHAN YUKSEL Adviseur brandveiligheid, bouwfysica en duurzaamheid bij arup

Effective window operation

iStock (2023)

Indoor air quality

ock (2023)

Indoor air quality

HVAC Installations

iStock (2023)

Introduction

Problem Statement

Manual window control

- Risk of inefficient energy use
- Occupants can satisfy their comfort

Automated window control

- Energy efficient window operation
- At the expense of occupants' comfort, satisfaction and productivity

Introduction

Problem Statement

Window Feedback System

window operation impact

To what extent can **window feedback systems** improve the **indoor environment** and **occupant satisfaction** in open-plan workplaces?

Window opening behaviour

Drivers of human window opening behaviour:

External		Internal			
Physical	Contextual	Psychological	Physiological	Social	
Outdoor temperature Indoor temperature Air velocity Relative humidity Solar radiation CO2 concentration PM2.5 concentration Noise	Occupancy Window Design Distance to façade Façade orientation Thermal mass Installations (HVAC) Interior doors Rainfall	Expectations Concerns Habits Lifestyle/schedule Knowledge/education Stress level	Age Gender Health Clothing Activity level Food and beverages	Social norms Interrelationships	

Window opening behaviour

Drivers of human window opening behaviour:

External		Internal			
Physical	Contextual	Psychological	Physiological	Social	
Outdoor temperature Indoor temperature Air velocity Relative humidity Solar radiation CO2 concentration PM2.5 concentration Noise	Occupancy Window Design Distance to façade Façade orientation Thermal mass Installations (HVAC) Interior doors Rainfall	Expectations Concerns Habits Lifestyle/schedule Knowledge/education Stress level	Age Gender Health Clothing Activity level Food and beverages	Social norms Interrelationships	

Reasons for window opening (Ackerly & Brager, 2013):

TO BE COOLER	75%
FOR FRESH AIR	70%
TO INCREASE AIR MOVEMENT	60%
OR CONNECTION TO THE OUTDOORS	30%
I NOTICE the 'OPEN' SIGNAL	28%

Reasons for window closing:

HEAT LOSS

RAIN

WIND

Parameters for measurements and evaluation

Thermal comfort

Heat balance approach

- Indoor air temperature
- Indoor mean radiant temperature
- Indoor air velocity
- Air humidity
- Metabolism
- Clothing

Adaptive approach

- Monthly mean outdoor air temperature
- Operative temperature

Indoor Air Quality

- Carbon dioxide (CO₂)
- Particulate matter (PM₁₀ & PM_{2.5})
- Volatile Organic Compounds (VOC)
- Formaldehyde (HCHO)
- Radon (Rn)
- Ozone (O₃)
- Carbon monoxide (CO)

Energy efficiency

- Indoor temperature
- Outdoor temperature
- Window opening time
- Air flow rate
 - Air velocity
 - Openable window area

- CO₂ concentration
- Number of occupants

Parameters for measurements and evaluation

Thermal comfort

Heat balance approach

- Indoor air temperature
- Indoor mean radiant temperature
- Indoor air velocity
- Air humidity
- Metabolism
- Clothing

Adaptive approach

- Monthly mean outdoor air temperature
- Operative temperature

Indoor Air Quality

- Carbon dioxide (CO₂)
- Particulate matter (PM₁₀ & PM_{2.5})
- Volatile Organic Compounds (VOC)
- Formaldehyde (HCHO)
- Radon (Rn)
- Ozone (O₃)
- Carbon monoxide (CO)

Energy efficiency

- Indoor temperature
- Outdoor temperature
- Window opening time
- Air flow rate
 - Air velocity
 - Openable window area

- CO₂ concentration
- Number of occupants

Parameters for measurements and evaluation

Thermal comfort

Heat balance approach

- Indoor air temperature
- Indoor mean radiant temperature
- Indoor air velocity
- Air humidity
- Metabolism
- Clothing

Adaptive approach

- Monthly mean outdoor air temperature
- Operative temperature

Indoor Air Quality

- Carbon dioxide (CO₂)
- Particulate matter (PM₁₀ & PM_{2.5})
- Volatile Organic Compounds (VOC)
- Formaldehyde (HCHO)
- Radon (Rn)
- Ozone (O₃)
- Carbon monoxide (CO)

Energy efficiency

- Indoor temperature
- Outdoor temperature
- Window opening time
- Air flow rate
 - Air velocity
 - Openable window area

- CO₂ concentration
- Number of occupants

Parameters for measurements and evaluation

Thermal comfort

Heat balance approach

- Indoor air temperature
- Indoor mean radiant temperature
- Indoor air velocity
- Air humidity
- Metabolism
- Clothing

Adaptive approach

- Monthly mean outdoor air temperature
- Operative temperature

Indoor Air Quality

- Carbon dioxide (CO₂)
- Particulate matter (PM₁₀ & PM_{2.5})
- Volatile Organic Compounds (VOC)
- Formaldehyde (HCHO)
- Radon (Rn)
- Ozone (O₃)
- Carbon monoxide (CO)

Energy efficiency

- Indoor temperature
- Outdoor temperature
- Window opening time
- Air flow rate
 - Air velocity
 - Openable window area

- CO₂ concentration
- Number of occupants

Design

Algorithm

Experiment

Methodology

22

Experiment

Temp RH

PM

Measurement set-up

Relative Humidity:

Threshold value = 30 % Mean exceedance per day = 1 h 43 min 42 Measured days Mean ----Threshold 40 38 36 Relative humidity indoor (%) 34 32 30 28 26 12:00 18:00 10:00 14:00 16:00 Time (h)

- 40% of the respondents is satisfied with the indoor air quality and thermal environment
- 2. **48%** of the respondents is **smelling odours** sometimes or more often
- 3. **89%** of the respondents is experiencing **thermal discomfort** sometimes or more often

Satisfaction indoor environment:

Discomfort indoor environment

Sources of thermal discomfort

Reasons for window opening

Reasons for window closing

Results & Discussion: New situation

•

Relative Humidity:

Mean exceedance per day = 0 min 55 Measured days Mean Mean

Results & Discussion: Objective measurements

Comparison

New situation

Results & Discussion: Subjective measurements

Comparison

- 82% of the respondents understood the meaning of the window feedback colours
- 2. Occupants did **understand** the **purpose** of the system
- 3. Occupants **did notice and respond** to the system
- 4. Occupants were **satisfied** with the implementation and **did trust** the system

Noticing and responsive to window feedback:

Satisfaction and trust on the window feedback system:

Conclusion

The window feedback system does contribute to a better environment

- 1. Window Opening time increased with **481%**
- 2. Ineffective window operation reduced with **55%**
 - Temperature improved with 63%
 - Relative humidity improved with 100%
 - CO₂-concentration improved with **66%**
- 3. Occupants do **understand and trust** the window feedback system
- 4. About **90% of the 22 respondents** do notice and respond to the provided feedback

Design guidelines

- 1. Include an additional **parameter display**
- 2. Do not include blinking lights or feedback messages to phone/computers

